PRTODAY / NewswireToday Free press release distribution service network

More news: Nanotechnology
Written by / Agency / Source: Nanowerk, LLC

Check Ads Availability|e-mail Article


Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!

Nanoparticles May Play a Role in Inhibiting the Multidrug Resistance in Chemotherapy - New research by suggests that nanoparticle surface chemistry and size as well as the unique properties of the magnetic nanoparticles themselves may contribute to a synergistic enhanced effect of drug uptake of  cancer cells.
Nanoparticles May Play a Role in Inhibiting the Multidrug Resistance in Chemotherapy

 

NewswireToday - /newswire/ - Honolulu, HI, United States, 2006/07/06 - New research by suggests that nanoparticle surface chemistry and size as well as the unique properties of the magnetic nanoparticles themselves may contribute to a synergistic enhanced effect of drug uptake of cancer cells..

   
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Multidrug resistance, the principal mechanism by which many cancers develop resistance to chemotherapy drugs, is a major factor in the failure of many forms of chemotherapy. New research by Chinese scientists suggests that nanoparticle surface chemistry and size as well as the unique properties of the magnetic nanoparticles themselves may contribute to a synergistic enhanced effect of drug uptake of targeted cancer cells. These findings could result in promising biomedical applications for cancer therapy.

Professor Xuemei Wang from the the State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory) in Nanjing, PR China, together with several of her colleagues from Southeast University, recently published a paper titled "Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells" in the June 26, 2006 online issue of Nanotechnology.
In it, the researchers describe their investigation of the synergistic effect of three kinds of magnetic nanoparticles, nano Fe3O4, Ni and Fe2O3, on the drug uptake of anticancer drug daunorubicin in leukemia K562 cells.

They show how Fe3O4 nanoparticles could remarkably enhance the uptake or diffusion efficiency of anticancer drugs into target cancer cells (especially drug resistance cancer cells). If Fe3O4 nanoparticles, which are biocompatible and very stable, are fixed at the ailing area by using external magnetic field during the tumor treatment, the chemotherapy effect could be considerably enhanced by combination of the application of the new magnetic nanoparticles in drug delivery systems for achieving the targeting and controlled drug release.

"Our results illustrate that the presence of magnetic nanoparticles could facilitate the drug accumulation of daunorubicin inside leukemia cells and the enhancement effect of nano Fe3O4 is much stronger than that of the other two magnetic nanoparticles" Wang explains the findings to Nanowerk. "These observations are consistent with the results of our recent biological experimental studies, which indicates that the presence of Fe3O4 nanoparticles could apparently inhibit the growth of the respective leukemia cells (Interestingly, the Fe3O4 nanoparticle itself could also inhibit the cell growth somehow); especially, when treated the target cells by anticancer drug daunorubicin together with Fe3O4 nanoparticles, the growth of leukemia cells could be much more remarkably inhibited than that with only daunorubicin or other nanoparticles. Since these three kinds of nanoparticles were all capped with the tetraheptylammonium, our observations suggest that both the size and the unique properties of magnetic nanoparticles themselves may contribute to the synergistic enhanced effect of the drug uptake of targeted cancer cells."

The magnetic targeting offers a unique opportunity to treat tumors without systemic toxicity. It is known that the cure efficiency of cancer chemotherapy depends not only on the anticancer drug itself but also on how it is delivered to its targets. As already reported in some literature, it has been observed that the magnetic particles can be targeted and concentrated in some tumor tissue at significantly high level.

"Our observations indicate that magnetic nanoparticles with different size and surface chemistry have different ability to enter target cells and thus the relative efficiency of the drug delivery systems by the conjugation of drugs with nanoparticles will be critically dependent upon nanoparticle surface chemistry and size of the functionalized nanoparticles" says Wang.

"Based on these observations, our future research with regard to cancer therapy may focus on the relative mechanisms of new magnetic nanoparticles" Wang describes a possible direction for her group's future research. "Magnetic nanomaterials are especially promising for the early diagnosis of some cancers and for efficiently targeting chemotherapy.

By Michael Berger, Copyright 2006 Nanowerk LLC. All rights reserved.

 
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Written by / Agency / Source: Nanowerk, LLC

 
 

Availability: All Regions (Including Int'l)

 

Traffic Booster: [/] Quick Newswire Today Visibility Checker

 

Distribution / Indexing: [+]

 
 
# # #
 
 
  Your Banner Ad showing on ALL
Nanotechnology articles,
CATCH Visitors via Your Competitors Announcements!


Nanoparticles May Play a Role in Inhibiting the Multidrug Resistance in Chemotherapy

Company website links NOT available to basic submissions
It is OK to republish and/or LINK any newswire for any legitimate media purpose as long as you name Newswire Today and LINK as the source.
 
  Is this your article?
Activate ALL web links and social stream by Upgrading to Press Release PREMIUM Plan Now!

|
Publisher Contact: Michael Berger - Nanowerk.com 
1-808-741-1739 michael[.]nanowerk.com
 
Newswire Today - PRZOOM / PRTODAY disclaims any content contained in this article. If you need/wish to contact the company who published the current release, you will need to contact them - NOT us. Issuers of articles are solely responsible for the accuracy of their content. Our complete disclaimer appears here.
IMPORTANT INFORMATION: Issuance, publication or distribution of this press release in certain jurisdictions could be subject to restrictions. The recipient of this press release is responsible for using this press release and the information herein in accordance with the applicable rules and regulations in the particular jurisdiction. This press release does not constitute an offer or an offering to acquire or subscribe for any Nanowerk, LLC securities in any jurisdiction including any other companies listed or named in this release.

Nanotechnology via RSSAdd NewswireToday - PRZOOM Headline News to FeedBurner
Find who RetweetFollow @NewswireTODAY



Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!


Read Latest Articles From Nanowerk, LLC / Company Profile


Read Nanotechnology Most Recent Related Newswires:

NEC Discovers 'Carbon Nanobrush' - The World's First Fibrous Aggregate of Carbon Nanohorns
Frost & Sullivan Commends RUSNANO for Accelerating the Russian Nanotechnology Industry with Its Unique Investment Strategy and Innovative Services
Imec and Crystal Solar Demonstrate 22.5 Percent nPERT Si Solar Cells on Kerfless Epitaxial Wafers
Nanomaterials for Printing Market Worth $1,974 Million by 2019 Reports MarketsAndMarkets
Nanotechnology in Medical Devices Market Worth $8.5 Billion by 2019 Finds MarketsandMarkets
Polymer Nanocomposites Market Worth $5,100 Million by 2020 Finds MarketsAndMarkets
First Speakers of EuroNanoForum 2015 Announced
OCSiAl Group Receives Frost & Sullivan Technology Innovation Award for its Game-Changing Carbon Nanotube Production Process
Elmo Features its NANO Ultra High Power Servo Drive at IAS 2014 in China
Carbodeon Ltd Oy Announces Improvements to Electroless Nickel Including A 3x Improvement in Wear Resistance
IMARC Group Publishes New Report Insights on Setting Up A Rare Earth Magnet Manufacturing Plant
Carbodeon Enables 20 Percent Increase in Polymer Thermal Filler Conductivity
Industry Veteran Fergus Clarke Joins Picodeon as CEO
Picodeon’s Pulsed Laser Deposition Technology Enables Microstructural Control
Imec Integrates CCD and CMOS Technology to Improve Performance of CMOS imagers

Boost Your Social Network
& Crowdfunding Campaigns


LIFETIME SOCIAL MEDIA WALL
NewswireToday Celebrates 10 Years in Business


PREMIUM Members


Visit  Triggr & Bloom

Visit  JobsWare.com





 
  ©2016 Newswire Today — Limelon Advertising, Co.
Home | About | Advertise/Pricing | Contact | Investors | Privacy/TOS | Sitemap | FRANCAIS
newswire, PR free press releases distribution service magazines engine news alert newsroom press room breaking news public relations articles company news alerts newswiredistribution ezine bizentrepreneur biznewstoday digital business report market search pr firms agencies reports distri-bution today investor relation successful internet entrepreneurs newswire distribution prtoday.com freenewswiredistribution asianewstoday bizwiretoday USA pr UK today - NOT affiliated with PRNewswire as we declined their partnership offer in 2013
 
PRTODAY & NewswireTODAY are NOT affiliated with USA TODAY (usatoday.com)