PRTODAY / NewswireToday Free press release distribution service network

More news: Nanotechnology
Written by / Agency / Source: Nanowerk, LLC

Check Ads Availability|e-mail Article


Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!

Ultra-Strong Composite Materials with Nanotubes - Carbon nanotubes (CNTs) are five times less dense than steel and approximately 30 times stronger. Their mechanical properties make them ideal candidates for the mechanical reinforcement of polymers.
Ultra-Strong Composite Materials with Nanotubes

 

NewswireToday - /newswire/ - Honolulu, HI, United States, 2006/04/09 - Carbon nanotubes (CNTs) are five times less dense than steel and approximately 30 times stronger. Their mechanical properties make them ideal candidates for the mechanical reinforcement of polymers..

   
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

(Nanowerk News) CNTs are the ultimate mechanical filler with very low densities and Young moduli (the measurement of stiffness of a material) superior to all other carbon fibers.

A recent publication by three researchers from the University of Dublin Trinity College in Ireland, Jonathan Coleman, Umar Khan and Yurii Gun'ko, explores the progress that has already been made in the area of mechanical reinforcement of polymers using CNTs. Their review, titled "Mechanical Reinforcement of Polymers Using Carbon Nanotubes" was published in the Feb. 22, 2006 online edition of Advanced Materials.

Several mechanical properties can be targeted for reinforcement of polymers: the Young modulus, tensile strength (the stress required to break a material) and toughness (the work done to break a material). According to the Irish researchers, a large amount of work will have to be done before the most is made of the exceptional mechanical properties of CNTs.
"There are four main system requirements for effective reinforcement of polymers" Gun'ko told Nanowerk. "These are a large aspect ratio, good dispersion, alignment, and interfacial stress transfer."

The Trinity College researchers explain: "Aspect ratio must be large to maximize the load transfer to the nanotubes. Dispersion is a more fundamental issue as CNTs must be uniformly dispersed to achieve efficient load transfer to the nanotube network and achieve a more uniform stress distribution. Alignment is a less crucial issue. While it is necessary to maximize strength and stiffness, it is not always beneficial. Aligned composites have very anisotropic mechanical properties, which may need to be avoided in bulk samples. In fibers, however, alignment has no downside and is a good way to maximize reinforcement."
"Probably the most important requirement for a CNT-reinforced composite" says Coleman "is that external stresses applied to the composite as a whole are efficiently transferred to the CNTs, allowing them to take a disproportionate share of the load."
There are several traditional methods for processing polymer composites. The most common method for preparing polymer–CNT composites is to mix the CNTs and polymer in a suitable solvent before evaporating the solvent to form a composite film. If the polymer types used are insoluble, in particular thermoplastic polymers, melt processing is used as a common alternative. Finally, there are various methods of chemical processing of CNT–polymer composites, involving in-situ polymerization and covalent functionalization of CNTs with polymer molecules.

A number of novel CNT-polymer composite preparation methods have been reported for the fabrication of composite films and composite fibers that are distinct from the traditional methods mentioned above. They include the layer-by-layer (LBL) assembly method, Buchner filtration, electrospinning and coagulation spinning.
By critically analyzing and comparing the mechanical properties of various CNT–polymer composites prepared by different techniques the researchers conclude that composites based on chemically modified nanotubes show the best results. Of all the processing methods, the overall results are worst for the melt-based systems. An interesting conclusion of these results is that it is premature to assume that SWNTs are superior, as many commentators have. Another disappointing fact is that strength enhancement has been poor except in the case of composite fibers.

"These results suggest that there are three main areas where significant improvement is urgently needed" says Gun'ko. "The problems with mechanical reinforcement of melt processed composites must be addressed. Any CNT-reinforced composites produced at an industrial level are likely to be produced by melt processing."

"Another significant problem" adds Coleman, "is the disappointing values for composite strength and, a more important issue that is probably a partial cause of this, is that in very few cases large volume fractions are attained."
Going forward, research needs to be done to find the optimum tube type and then maximize CNT solubility, dispersion (and hence, volume fraction), and stress transfer. All these factors can be addressed as one by functionalization of the nanotubes. Once the CNTs have been fully optimized, the mechanical properties that are attainable can be considered.

By Michael Berger, Copyright 2006 Nanowerk LLC

 
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Written by / Agency / Source: Nanowerk, LLC

 
 

Availability: All Regions (Including Int'l)

 

Traffic Booster: [/] Quick Newswire Today Visibility Checker

 

Distribution / Indexing: [+]

 
 
# # #
 
 
  Your Banner Ad showing on ALL
Nanotechnology articles,
CATCH Visitors via Your Competitors Announcements!


Ultra-Strong Composite Materials with Nanotubes

Company website links NOT available to basic submissions
It is OK to republish and/or LINK any newswire for any legitimate media purpose as long as you name Newswire Today and LINK as the source.
 
  Is this your article?
Activate ALL web links and social stream by Upgrading to Press Release PREMIUM Plan Now!

|
Publisher Contact: Michael Berger - Nanowerk.com 
1-808-741-1739 michael[.]nanowerk.com
 
Newswire Today - PRZOOM / PRTODAY disclaims any content contained in this article. If you need/wish to contact the company who published the current release, you will need to contact them - NOT us. Issuers of articles are solely responsible for the accuracy of their content. Our complete disclaimer appears here.
IMPORTANT INFORMATION: Issuance, publication or distribution of this press release in certain jurisdictions could be subject to restrictions. The recipient of this press release is responsible for using this press release and the information herein in accordance with the applicable rules and regulations in the particular jurisdiction. This press release does not constitute an offer or an offering to acquire or subscribe for any Nanowerk, LLC securities in any jurisdiction including any other companies listed or named in this release.

Nanotechnology via RSSAdd NewswireToday - PRZOOM Headline News to FeedBurner
Find who RetweetFollow @NewswireTODAY



Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!


Read Latest Articles From Nanowerk, LLC / Company Profile


Read Nanotechnology Most Recent Related Newswires:

NEC Discovers 'Carbon Nanobrush' - The World's First Fibrous Aggregate of Carbon Nanohorns
Frost & Sullivan Commends RUSNANO for Accelerating the Russian Nanotechnology Industry with Its Unique Investment Strategy and Innovative Services
Imec and Crystal Solar Demonstrate 22.5 Percent nPERT Si Solar Cells on Kerfless Epitaxial Wafers
Nanomaterials for Printing Market Worth $1,974 Million by 2019 Reports MarketsAndMarkets
Nanotechnology in Medical Devices Market Worth $8.5 Billion by 2019 Finds MarketsandMarkets
Polymer Nanocomposites Market Worth $5,100 Million by 2020 Finds MarketsAndMarkets
First Speakers of EuroNanoForum 2015 Announced
OCSiAl Group Receives Frost & Sullivan Technology Innovation Award for its Game-Changing Carbon Nanotube Production Process
Elmo Features its NANO Ultra High Power Servo Drive at IAS 2014 in China
Carbodeon Ltd Oy Announces Improvements to Electroless Nickel Including A 3x Improvement in Wear Resistance
IMARC Group Publishes New Report Insights on Setting Up A Rare Earth Magnet Manufacturing Plant
Carbodeon Enables 20 Percent Increase in Polymer Thermal Filler Conductivity
Industry Veteran Fergus Clarke Joins Picodeon as CEO
Picodeon’s Pulsed Laser Deposition Technology Enables Microstructural Control
Imec Integrates CCD and CMOS Technology to Improve Performance of CMOS imagers

Boost Your Social Network
& Crowdfunding Campaigns


LIFETIME SOCIAL MEDIA WALL
NewswireToday Celebrates 10 Years in Business


PREMIUM Members


Visit  BizJobs.com

Visit  JobsWare.com





 
  ©2016 Newswire Today — Limelon Advertising, Co.
Home | About | Advertise/Pricing | Contact | Investors | Privacy/TOS | Sitemap | FRANCAIS
newswire, PR free press releases distribution service magazines engine news alert newsroom press room breaking news public relations articles company news alerts newswiredistribution ezine bizentrepreneur biznewstoday digital business report market search pr firms agencies reports distri-bution today investor relation successful internet entrepreneurs newswire distribution prtoday.com freenewswiredistribution asianewstoday bizwiretoday USA pr UK today - NOT affiliated with PRNewswire as we declined their partnership offer in 2013
 
PRTODAY & NewswireTODAY are NOT affiliated with USA TODAY (usatoday.com)