PRTODAY / NewswireToday Free press release distribution service network

More news: Nanotechnology
Written by / Agency / Source: Nanowerk, LLC

Check Ads Availability|e-mail Article


Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!

Field Emission Displays - Making Nanotube TVs Happen - Researchers have turned to carbon nanotubes to create a new class of large area, high resolution, low cost flat panel displays.
Field Emission Displays - Making Nanotube TVs Happen

 

NewswireToday - /newswire/ - Honolulu, HI, United States, 2006/03/06 - Researchers have turned to carbon nanotubes to create a new class of large area, high resolution, low cost flat panel displays..

   
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Some believe field emission display (FED) technology, utilizing carbon nanotubes (CNT) as electron emitter, will be the biggest threat to LCD's dominance in the panel display arena and that FED is the technology of choice for ultra-high definition, wide-screen televisions.
FEDs, in a sense, are a hybrid of CRT televisions and LCD televisions. They capitalise on the well-established cathode-anode-phosphor technology built into full-sized CRTs using this in combination with the dot matrix cellular construction of LCDs. The electron emitters, arranged in a grid, are individually controlled by "cold" cathodes (unlike in normal CRTs, field emission does not rely on heating the cathode to boil off electrons) to generate colored light.

Field emission display technology makes possible the thin panel of today's liquid crystal displays (LCD), offers a wider field-of-view, provides the high image quality of today's cathode ray tube (CRT) displays, and requires less power than today's CRT displays.
Researchers in Taiwan report significant progress in developing a very low-cost fabrication method for the deposition of CNT film for FED applications. Their findings were reported in a paper titled "Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method" in the Feb. 7, 2006 online edition of the journal Nanotechnology.

Jeng-Rong Ho, Professor in the Department of Mechanical Engineering at National Chung Cheng University in Taiwan, explained to Nanowerk that their study proposes a simple and inherently very low cost fabrication method, based on the laser induced forward transfer (LIFT) technique, for the deposition of CNT film for FED applications. The LIFT technique employs laser irradiation to transfer a film initially precoated on an optically transparent support onto a substrate with single laser pulses.

"Here, for the first time" says Ho, "employing this technique for FED applications, precision pattern deposition of CNT on a variety of substrates at room temperature and in an ambient environment and also with the feature size down to 10 µm has been achieved." He adds "The lighting test shows that the patterned CNT film exhibits excellent field emission characteristics."
FED manufacturing requires CNT to be grown in precise sizes and densities. Height, diameter and tip sharpness affect voltage, while density affects current. But early techniques were rife with technical problems.

Researchers incorporated nanotubes into a paste that was placed on a substrate. The haphazard placement of the tubes and their tendency to clump together created spotty illumination. This problem was overcome by growing carbon nanotubes in a specific and orderly manner on substrates using a low-temperature chemical vapor deposition (CVD) process. Low melting temperature, however, excludes the use of the chemical vapour deposition method for growing the large area CNT film directly on substrates.

Several alternative approaches have been proposed. The printing based methods and the electrophoretic deposition related methods are two sets of alternatives that attract much industrial attention due to their full scalability and mass production potential. The printing based methods usually use binders or pastes mixing with the CNT that sometimes have problems of tube alignment, uniformity, insufficient outcrop tube density on the surface and possible organic residues. A special surface post-treatment, such as surface rubbing, adhesive taping or laser irradiation, is indispensable.
The electrophoretic related methods, although they have shown promise in producing reasonable homogeneity and packing density with controllable film thickness and morphology, require formation from the liquid phase and detailed information on operation has not been reported yet.
In their laser-assisted pattern deposition of CNT field emission cathodes on different substrates the Korean researchers achieved favourable emission characteristics, high pattern resolution, with feature size down to 10 µm, high feasibility of using various substrates, good CNT adhesion and fast deposition rate. Furthermore, all steps can be executed in the ambient environment and at low temperature, consequently offering the benefit of potential low cost fabrication of precision pattern deposition.

By Michael Berger, Copyright 2006 Nanowerk LLC

 
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Written by / Agency / Source: Nanowerk, LLC

 
 

Availability: All Regions (Including Int'l)

 

Traffic Booster: [/] Quick Newswire Today Visibility Checker

 

Distribution / Indexing: [+]

 
 
# # #
 
 
  Your Banner Ad showing on ALL
Nanotechnology articles,
CATCH Visitors via Your Competitors Announcements!


Field Emission Displays - Making Nanotube TVs Happen

Company website links NOT available to basic submissions
It is OK to republish and/or LINK any newswire for any legitimate media purpose as long as you name Newswire Today and LINK as the source.
 
  Is this your article?
Activate ALL web links and social stream by Upgrading to Press Release PREMIUM Plan Now!

|
Publisher Contact: Michael Berger - Nanowerk.com 
1-808-741-1739 michael[.]nanowerk.com
 
Newswire Today - PRZOOM / PRTODAY disclaims any content contained in this article. If you need/wish to contact the company who published the current release, you will need to contact them - NOT us. Issuers of articles are solely responsible for the accuracy of their content. Our complete disclaimer appears here.
IMPORTANT INFORMATION: Issuance, publication or distribution of this press release in certain jurisdictions could be subject to restrictions. The recipient of this press release is responsible for using this press release and the information herein in accordance with the applicable rules and regulations in the particular jurisdiction. This press release does not constitute an offer or an offering to acquire or subscribe for any Nanowerk, LLC securities in any jurisdiction including any other companies listed or named in this release.

Nanotechnology via RSSAdd NewswireToday - PRZOOM Headline News to FeedBurner
Find who RetweetFollow @NewswireTODAY



Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!


Read Latest Articles From Nanowerk, LLC / Company Profile


Read Nanotechnology Most Recent Related Newswires:

NEC Discovers 'Carbon Nanobrush' - The World's First Fibrous Aggregate of Carbon Nanohorns
Frost & Sullivan Commends RUSNANO for Accelerating the Russian Nanotechnology Industry with Its Unique Investment Strategy and Innovative Services
Imec and Crystal Solar Demonstrate 22.5 Percent nPERT Si Solar Cells on Kerfless Epitaxial Wafers
Nanomaterials for Printing Market Worth $1,974 Million by 2019 Reports MarketsAndMarkets
Nanotechnology in Medical Devices Market Worth $8.5 Billion by 2019 Finds MarketsandMarkets
Polymer Nanocomposites Market Worth $5,100 Million by 2020 Finds MarketsAndMarkets
First Speakers of EuroNanoForum 2015 Announced
OCSiAl Group Receives Frost & Sullivan Technology Innovation Award for its Game-Changing Carbon Nanotube Production Process
Elmo Features its NANO Ultra High Power Servo Drive at IAS 2014 in China
Carbodeon Ltd Oy Announces Improvements to Electroless Nickel Including A 3x Improvement in Wear Resistance
IMARC Group Publishes New Report Insights on Setting Up A Rare Earth Magnet Manufacturing Plant
Carbodeon Enables 20 Percent Increase in Polymer Thermal Filler Conductivity
Industry Veteran Fergus Clarke Joins Picodeon as CEO
Picodeon’s Pulsed Laser Deposition Technology Enables Microstructural Control
Imec Integrates CCD and CMOS Technology to Improve Performance of CMOS imagers

Boost Your Social Network
& Crowdfunding Campaigns


LIFETIME SOCIAL MEDIA WALL
NewswireToday Celebrates 10 Years in Business


PREMIUM Members


Visit  Triggr & Bloom

Visit  La Bella Bakery Artisan Bakery Arizona





 
  ©2016 Newswire Today — Limelon Advertising, Co.
Home | About | Advertise/Pricing | Contact | Investors | Privacy/TOS | Sitemap | FRANCAIS
newswire, PR free press releases distribution service magazines engine news alert newsroom press room breaking news public relations articles company news alerts newswiredistribution ezine bizentrepreneur biznewstoday digital business report market search pr firms agencies reports distri-bution today investor relation successful internet entrepreneurs newswire distribution prtoday.com freenewswiredistribution asianewstoday bizwiretoday USA pr UK today - NOT affiliated with PRNewswire as we declined their partnership offer in 2013
 
PRTODAY & NewswireTODAY are NOT affiliated with USA TODAY (usatoday.com)