PRTODAY / NewswireToday Free press release distribution service network

More news: Nanotechnology
Written by / Agency / Source: Nanowerk, LLC

Check Ads Availability|e-mail Article


Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!

Nanoscale Magnetic Materials Are A Key Focus in Developing Biomedical Applications - Spanish researchers developed a simple and inexpensive way to produce well-coated iron nanoparticles whose characteristics make them promising materials for their application as magnetic carriers.
Nanoscale Magnetic Materials Are A Key Focus in Developing Biomedical Applications

 

NewswireToday - /newswire/ - Honolulu, HI, United States, 2006/02/24 - Spanish researchers developed a simple and inexpensive way to produce well-coated iron nanoparticles whose characteristics make them promising materials for their application as magnetic carriers..

   
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

The particles thus obtained present a much stronger magnetic response than any composite material produced up to now involving magnetic nanoparticles encapsulated in inorganic matrices, and the rich chemistry and easy functionalization of the silica outer surface make them promising materials for their application as magnetic carriers.

Nanotechnology has developed to a stage that makes it possible to produce, characterise and specifically tailor the functional properties of magnetic nanoparticles for biomedical applications. These range from magnetic sorting used to recognize cells, as contrast agents for MRI imaging, as a target mechanism, and as drug or gene delivery agents.

For magnetic nanoparticles to be used in in-vivo applications, very low values of applied magnetic field are desirable. Therefore the suitable materials are those with high magnetisation at the operation at room temperature.
Magnetic nanoparticles commonly comprise of a magnetic core, usually iron and its oxides, encapsuled with a biocompatible coating such as an organic polymer or an inorganic shell that renders them biologically inert (research also continues into alternative magnetic particles such as cobalt or nickel, however these are toxic and susceptible to oxidation). The utilisation of magnetic iron oxide nanoparticles has the added advantage that the body is designed to process excess iron.

In all biomedical applications the coating of the particles is a very important issue. It helps to make the particles biocompatible, preventing their aggregation and the degradation of the metallic core, and reducing the extent of clearance by the reticuloendothelial system. Moreover, the outer coating surface of the particles can be functionalized to allow the binding of antibodies, proteins, medical drugs or other biomolecules to the system.

In spite of encouraging progress in recent years, the development of magnetic nanoparticles that can be used as drug delivery vectors remains a significant challenge for materials scientists.
One researcher active in this area, Jesús Santamaría from the Institute of Nanoscience of Aragón at the University of Zaragoza in Spain, explained to Nanowerk that any proposal for a drug delivery system must confront at least two yet-unsolved challenges:
"First of all, target selectivity is necessary, meaning that the drug must be released preferentially to the target organ or cells, minimizing damage to healthy tissue."
"Second, the rate of drug delivery in the proximity of the target organ or cells must be controllable. In addition, a common limitation to all methods is of course the need to achieve a sufficient degree of biocompatibility."
What makes iron-based nanoparticles so interesting are their characteristics, that allow researchers to address these hurdles. Says Santamaría: "With iron-based magnetic nanoparticles one should be able to:

1) Direct the particles to the vicinity of the target organ, using either external or internal (i.e., implanted permanent magnets) fields.
2) "See" the particles, (e.g., by MRI), and follow their fate within the body.
3) Accelerate, if needed, the rate of release once the target organ has been reached, using magnetic field heating."
In a recent paper, Santamaría and his colleagues describe a new one-step method to prepare iron nanoparticles surrounded by thin silica coatings.
The researchers synthesized their nanoparticles by means of the arc-discharge method, which is a novel approach to the synthesis of these materials.

The silica outer layer not only provides a good degree of biocompatibility, but also a high specific surface area (which can be used as carrier of adsorbed drugs) and an external surface whose rich chemistry allows easy functionalization by suitable biomolecules. Also, controlling the thickness and pore-size distribution of the silica coating provides a direct method to tailor the rate and duration of drug release. In spite of the silica coating, the magnetic properties of the particles are still remarkable, with magnetic moments exceeding 160 emu/g.
The paper, titled "Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method" was published in the Feb. 7, 2006 online edition of Nanotechnology.

By Michael Berger, Copyright 2006 Nanowerk LLC

 
 
Your Banner Ad Here instead - Showing along with ALL Articles covering Nanotechnology Announcements

Replace these Affiliate Programs at ANYTIME! Your banner here within the next hour. Learn How!


 

Written by / Agency / Source: Nanowerk, LLC

 
 

Availability: All Regions (Including Int'l)

 

Traffic Booster: [/] Quick Newswire Today Visibility Checker

 

Distribution / Indexing: [+]

 
 
# # #
 
 
  Your Banner Ad showing on ALL
Nanotechnology articles,
CATCH Visitors via Your Competitors Announcements!


Nanoscale Magnetic Materials Are A Key Focus in Developing Biomedical Applications

Company website links NOT available to basic submissions
It is OK to republish and/or LINK any newswire for any legitimate media purpose as long as you name Newswire Today and LINK as the source.
 
  Is this your article?
Activate ALL web links and social stream by Upgrading to Press Release PREMIUM Plan Now!

|
Publisher Contact: Michael Berger - Nanowerk.com 
1-808-741-1739 michael[.]nanowerk.com
 
Newswire Today - PRZOOM / PRTODAY disclaims any content contained in this article. If you need/wish to contact the company who published the current release, you will need to contact them - NOT us. Issuers of articles are solely responsible for the accuracy of their content. Our complete disclaimer appears here.
IMPORTANT INFORMATION: Issuance, publication or distribution of this press release in certain jurisdictions could be subject to restrictions. The recipient of this press release is responsible for using this press release and the information herein in accordance with the applicable rules and regulations in the particular jurisdiction. This press release does not constitute an offer or an offering to acquire or subscribe for any Nanowerk, LLC securities in any jurisdiction including any other companies listed or named in this release.

Nanotechnology via RSSAdd NewswireToday - PRZOOM Headline News to FeedBurner
Find who RetweetFollow @NewswireTODAY



Are you the owner of this article?, Turn it PREMIUM with your LOGO instead - and make it 3rd party Ads-Free! within the next hour!


Read Latest Articles From Nanowerk, LLC / Company Profile


Read Nanotechnology Most Recent Related Newswires:

NEC Discovers 'Carbon Nanobrush' - The World's First Fibrous Aggregate of Carbon Nanohorns
Frost & Sullivan Commends RUSNANO for Accelerating the Russian Nanotechnology Industry with Its Unique Investment Strategy and Innovative Services
Imec and Crystal Solar Demonstrate 22.5 Percent nPERT Si Solar Cells on Kerfless Epitaxial Wafers
Nanomaterials for Printing Market Worth $1,974 Million by 2019 Reports MarketsAndMarkets
Nanotechnology in Medical Devices Market Worth $8.5 Billion by 2019 Finds MarketsandMarkets
Polymer Nanocomposites Market Worth $5,100 Million by 2020 Finds MarketsAndMarkets
First Speakers of EuroNanoForum 2015 Announced
OCSiAl Group Receives Frost & Sullivan Technology Innovation Award for its Game-Changing Carbon Nanotube Production Process
Elmo Features its NANO Ultra High Power Servo Drive at IAS 2014 in China
Carbodeon Ltd Oy Announces Improvements to Electroless Nickel Including A 3x Improvement in Wear Resistance
IMARC Group Publishes New Report Insights on Setting Up A Rare Earth Magnet Manufacturing Plant
Carbodeon Enables 20 Percent Increase in Polymer Thermal Filler Conductivity
Industry Veteran Fergus Clarke Joins Picodeon as CEO
Picodeon’s Pulsed Laser Deposition Technology Enables Microstructural Control
Imec Integrates CCD and CMOS Technology to Improve Performance of CMOS imagers

Boost Your Social Network
& Crowdfunding Campaigns


LIFETIME SOCIAL MEDIA WALL
NewswireToday Celebrates 10 Years in Business


PREMIUM Members


Visit  NAKIVO, Inc.

Visit  BizJobs.com





 
  ©2016 Newswire Today — Limelon Advertising, Co.
Home | About | Advertise/Pricing | Contact | Investors | Privacy/TOS | Sitemap | FRANCAIS
newswire, PR free press releases distribution service magazines engine news alert newsroom press room breaking news public relations articles company news alerts newswiredistribution ezine bizentrepreneur biznewstoday digital business report market search pr firms agencies reports distri-bution today investor relation successful internet entrepreneurs newswire distribution prtoday.com freenewswiredistribution asianewstoday bizwiretoday USA pr UK today - NOT affiliated with PRNewswire as we declined their partnership offer in 2013
 
PRTODAY & NewswireTODAY are NOT affiliated with USA TODAY (usatoday.com)